
Compression of the BoxTree

data structure

Alexander Schwochow

Supervisor: M.Sc. Toni Tan

Bachelor Thesis

Computer Science

Computer Graphics and Virtual Reality Research Lab
University of Bremen

Germany
October 2021

Abstract

This thesis aims to present multiple ways to compress and optimize the amount of
memory a BoxTree uses. For this, different techniques will be shown and evaluated
on a theoretical level. The changes most likely to be applicable, will then be grouped
based on their characteristics and put into three main implementations, that in
some cases get sub-implementations for comparisons. Each of these will then be
tested in dept and based upon the results, use cases for each implementation will
be recommended.

ii

Contents

Abstract ii

1 Introduction 1

1.1 The BoxTree . 2

1.2 Motivation . 2

2 Structure optimizations 4

2.1 The original structure . 4

2.2 Moving constant members . 6

2.3 Indexing . 6

2.4 Merge leafs . 6

2.4.1 Minimize Leafs . 7

2.5 Cuts . 7

2.6 Automatic index calculation . 8

2.7 Overview . 11

3 Dynamic compression 12

3.1 Traditional compression . 12

3.2 Domain specific compression . 13

3.2.1 Runtime size handling . 15

iii

3.2.2 Float improvements . 16

4 Memory savings 19

4.1 Optimized BoxTree . 20

4.2 Compression . 21

4.2.1 Deduplication of floats . 22

4.3 Conclusion . 24

5 Performance overhead and optimizations 25

5.1 Testing Methodology . 25

5.2 Optimized BoxTree . 26

5.3 Compressed BoxTree . 27

5.3.1 Deduplication . 29

6 Conclusion 31

Appendix 35

iv

CHAPTER 1

Introduction

Collision detection is deeply linked with virtual reality and with that graphics as a

whole. Everything, that tries to simulate a virtual world, has to simulate the colli-

sion of objects, to give it a realistic appearance. Otherwise objects could just clip

into each other and any kind of gravity would result in objects falling indefinitely.

This does not just apply to virtual worlds used for games, or simulations, this is

also applicable for real life processes, like CNC milling [1], or robots [2] that require

moving parts not to collide. The exact requirements in terms of resource usage and

performance can thus differ for each use case.

Overall, the idea of collision detection is to see, if any of the polygons, consisting

of a few points of one object, are within a polygon of a second object. Checking

this manually for every possible combination of polygon-pairings can be incredibly

inefficient. For this reason, a more performant concept, called Bounding Volumes

was developed. A Bounding Volume is simple geometric object, like a boxes, or

a spheres, that wraps around every collision-object, most commonly splitting into

gradually smaller Bounding Volumes, forming a Bounding Volume Hierarchy. When

checking for collisions, it is then possible to check if the biggest Bounding Volumes

1

intersect and then proceed accordingly, by either stepping down to the finer layer of

Bounding Volumes, checking the underlying polygons, or immediately returning the

result. This might seem, like it is just an extra step to get to the polygons, but it

can massively speed up the process by eliminating all polygons inside of Bounding

Volumes, that are not overlapping. As such, this approach has become very popular

for collision detection. [3]

1.1 The BoxTree

For this thesis, the Bounding Volume and corresponding algorithm used is the Box-

Tree. As the name implies, it uses boxes as its Bounding Volumes. It starts of with

one box around the entire object, that recursively splits of into two new boxes, until

a box only spans one polygon. At that point, the box stores information about

the polygon, that is required to do polygon intersection with them. This type of

structure basically represents a binary tree, with the normal boxes, being nodes and

the polygon boxes being leafs. [4] There is a bit more to this, but details will be

added to this, when needed.

1.2 Motivation

Typically the main concern, when it comes to collision detection, is the performance

of the algorithm. Having the required result available for the next frame of a video

game, or other similar requirements, are typically more important, than the mem-

ory usage, which can often be neglected. However, there are use cases, where these

requirements can be flipped, or weighted more similarly. As an example, in the

IoT department, you can imagine vacuum, or service robots calculating paths for

their movement, to avoid hitting other objects and robots. For such a case, typical

performance requirements don’t necessarily hold, because it does not make to much

of a difference, if a collision can be found a few milliseconds fewer or later. Another

factor, the production cost on the other hand, can be crucial. Being able to reduce

the amount of installed RAM can reduce the price to produce these machines, which

2

either results in higher profit margins or lower costs to the consumer.

Even usually performance oriented domains, like gaming could profit from this.

Modern game consoles don’t have dedicated video memory, instead using the same

physical RAM as graphics and system RAM. [5] Reducing the RAM used for collision

detection, can thus allow the memory to be used as V-RAM and enable higher

quality, or just more textures. Especially, since the limiting factor for visual fidelity

is the GPU, which gives the collision detection on the CPU a bit of room to work

with. As such, the main focus of this thesis will be to reduce the memory footprint

as much as possible, with a second focus on trying to remain as close as possible to

the original performance as possible.

3

CHAPTER 2

Structure optimizations

The original BoxTree implementation is focuses on speed and is not optimized to

yield the lowest possible memory footprint. As a result, it is possible to gain signif-

icant memory gains, by changing key parts of the original structure.1

2.1 The original structure

As explained in the Introduction, the BoxTree consists of boxes, that encompass

some object. These are implemented more or less straight forward, with each box

being a separately allocated heap object, that represents either a node, or a leaf.

Nodes store the information about how and where the next boxes are positioned.

This is represented with two floats and one integer for the plane, in which to cut.

In addition, nodes store two pointers to the next boxes, for which a Null-pointer

represents an empty sub-box. What an empty sub-box is and why it is useful will be

explained later. Leafs only need to store the information about the corresponding

polygon. For this, they store the index of the polygon, as well as 4 possible indexes of

1The implementation referenced can be found at https://gitlab.informatik.uni-bremen.

de/cgvr/CollDet

4

https://gitlab.informatik.uni-bremen.de/cgvr/CollDet
https://gitlab.informatik.uni-bremen.de/cgvr/CollDet

the points, that the polygon consists of. The actual 3D point-coordinates are stored

in the geometry, so a pointer to this array will also be stored. With the pointer and

the indexes it is then possible to read the coordinates when needed. A leaf also has

an integer for the cutplane, however it is not used as such. To differentiate between

nodes and leafs, as both are just BoxTree objects with a union for both sub-types,

the upper bits of the cutplane are used to mark the type.

With every number being represented by 4 bytes, this should theoretically add up to

32 bytes. However in practice, there is also an unused virtual destructor, padding, as

well as the decision by malloc to just allocate a few more bytes, then necessary. The

last of these is technically implementation specific behaviour and may not happen

with every compiler, or Standard-Library, however it is a noticeable side effect of

this style of implementation and reproducible on multiple machines. This over-

allocation has been found by observing an unexpectedly high overall memory usage

and has been confirmed by the malloc usable size() function, that prints the actually

allocated bytes per allocation. All of these increase the size of a BoxTree box by

almost a factor of two, resulting in a size of 56bytes. The resulting BoxTree box

looks like this:

BoxTree

virtual destructor 8

cutplane 4

padding 4

Union

Node Leaf

left-node ptr 8 polygon-index 4

right-node ptr 8 padding 4

cutp 4 4x point index 16

cutr 4 points ptr 8

padding 8

malloc overhead 8

Table 2.1: Layout of the Boxtree on a x64 system with sizes in bytes

5

2.2 Moving constant members

Every BoxTree leaf, of the same geometry, stores the same 64 bit pointer to the

points of its geometry. This is required, as every original BoxTree object, must

hold all the information necessary for a check, against another BoxTree. To save the

wasted space for these duplicated pointers, a header is added to the overall BoxTree.

This header will act as the first point of contact, when checking two BoxTrees against

each other, which allows us to only store constant information once and pass them

to the checking method, when collision detection is done. In addition to saving

already existing information, this also allows us to abstract away from the original

way the BoxTree was implemented, as long as a top-level interface is presented, that

behaves, like the original.

2.3 Indexing

As described at the start, the BoxTree is based on allocating every node and leaf, as a

separate BoxTree heap-object. This requires every node to store two 8 byte pointers

to the next BoxTree, as well as wasting 8 additional bytes for every allocation. To

stop malloc from wasting memory, the BoxTree boxes have to be stored in an array,

or vector. This also allows to just store 32bit indexes into this array, instead of 64bit

pointers. The resulting array will be stored in and read from the header.

2.4 Merge leafs

In addition to minimizing the size of references inside of BoxTrees, it is also possible

to reduce the number of references them self. To do so, the leafs will be merged

with the nodes above them, removing the need to store references to them. This

results in four different types of nodes, depending on the amount and placement of

the merged leafs.

6

2.4.1 Minimize Leafs

As explained earlier, the BoxTree stores a pointer into the original geometry used

to create the BoxTree. This pointer points to an array of 3D coordinates, or points

of the geometry, that each polygons refer to using its indexes. These polygons are

once each in the geometry, but also copied into the leafs, as every leaf represents a

polygon. There is however also the index of the polygon in each leaf, that refers to

the polygon in the geometry. With this, the whole polygon can be read at runtime

from the geometry, as long as the pointer to the polygon array in the geometry

is stored. This is basically the the same way the original implementation reads

the points, that also just get read dynamically. The only difference between the

polygons in the geometry and the ones in the leafs, is that during construction the

last of the indexes in the leafs would be marked, when the polygon is a triangle.

This information can however also just be read from the polygon pointer, reducing

the size of a leaf to just the one polygon index-integer. As nodes now either have

an index to refer to another node, or refer to a polygon with an index, these two

can just be represented by one union, resulting in the same size for all node-types.

For this to work, the type of the index has to be stored, which will be done in the

cutplane integer, that is not fully used. Having the same size allows the use of only

one array to hold all nodes, without any space wasted for padding.

2.5 Cuts

The only part of the BoxTree, that has so far has not been optimized is the cut-

information, that every node contains. This consists of the cutplane orientation

(x,y,z) and two floats, that mark the position of where the box is split. As this

information is exactly the new information, that is obtained, when building the

BoxTree and that is definitely needed for every check, it is considerably harder to

optimize. The cutplane could be shrunken down to just one byte, however due to

memory alignment and possible padding, optimizing this properly will be done in

the next chapter.

7

The best strategy to compress the floats is dependant on the type and size of the

geometry. As such, multiple options were implemented and evaluated. The easiest

option is to just use 16 bit floats. These will be converted from and to 32 bit floats,

when they get stored and read, as working with anything else, then 32 or 64 bit floats

is generally not intended. Converting from 16 bit floats uses just 3 instructions[A.5]

and otherwise remains at the same performance level. A more sophisticated option

to store the floats will be described in the next chapter.

2.6 Automatic index calculation

The main part, that is remaining, are the indexes to the next nodes. These have

already shrunken to halve their size, it would however be nice to eliminate them

completely. For this, the children would have to be placed in a predictable way, so

that their index can be calculated based on the index of their parent. The first idea

would be to just store the children of a node directly behind the node.

index(childleft) = index(parent) + 1 (2.1)

index(childright) = index(parent) + 2 (2.2)

Sadly this does not work, as the children of the first child would have to overwrite

the second child.

1

2

3

3

This means the children have to be stored at an index, that is guaranteed to not

be used by another child. The way to do this, is to double the parents index and

store the two children there. To hint at the correctness, one could just imaging

8

enumerating a full, complete binary tree from top to bottom, left to right.

1

2

4 5

3

6 7

index(childleft) = index(parent)× 2 (2.3)

index(childright) = index(parent)× 2 + 1 (2.4)

The problem, that this approach has, is that it can only efficiently store full, complete

binary trees. If the binary tree is not full, or complete, this method still has to

allocate the memory for a theoretical maximum. As an example, take a look at this

binary tree:

1

3

6 7

Even though node 2 is not present, the indexes of the children of node 1 still have to

start at 3. This continues down to the next level, where indexes 4 & 5 remain unused.

To store this, an array of size 7×(node-size) would have to be allocated, despite only

four nodes being present. For actual geometries, this tree would obviously extend

dozents of layers down, effectively wasting half of the array, assuming the right part

remains full, complete and extends down to the same level. These properties are

also called a perfect binary tree. To estimate, if this approach could save memory,

only the lowest depth of a BoxTree from typical geometries has to be determined to

calculate the size of a perfect BoxTree, which would have to be allocated for. This

can be done using the formula [6]: 2depth− 1 and would result in the following table,

9

assuming the size of a node shrinks to 8bytes:

max-depth slots used slots current size new size

ATST-4252 31 2.15× 109 7419 116KB 17GB

Castle-14871 41 2.20× 1012 25011 391KB 17TB

Raptor-400000 43 8.80× 1012 772783 12MB 70TB

ATST-152944 54 1.80× 1016 266924 4MB 144PB

Table 2.2: Size calculation for using implicit indexing

The resulting size would be orders of magnitude larger, than the current implemen-

tation, with most of the array being empty. This makes sense, as the BoxTree uses

implicit empty boxes. Typically a box splits into two Boxes with roughly the same

amount of polygons. In many cases, it can however be faster, to just cut of an empty

part of the original box and store this as an invalid index for one of the children.

Any object, that collides with this empty child, can immediately return, instead of

otherwise traversing down continually halving boxes. Each of these however adds

one level to the binary tree, that continues with just one child. This is basically the

worstcase for this method, as the the size estimates show. Using a map to avoid the

cost for empty slots might seem sensible, however this map would have to store the

index as a key, negating the attempt at removing them.

There exists another solution though. As seen before, placing both children behind

the node, results in overlapping placements. Placing just one child behind a node is

viable though, as long as that child is allowed to place its own children, before the

index for the second child is determined. This means only one index would need

to be stored. That does however result in another problem. Currently, each node

of the BoxTree is the same size and as such, they can be stored in just one array.

If only one node-index would be stored, the size of only some node-types would

decrease. More specifically, only when the node-index is not reused as a polygon

index it can be removed. That would mean, the nodes would have to be stored in

different arrays, as otherwise they would just have padding up to the largest type

10

in the array for every node. Different arrays would however mean, that the same

indexes cannot be used across the whole BoxTree, effectively invalidating this whole

approach.

2.7 Overview

All of these optimizations result in a new BoxTree, that is 16 bytes in size, which

means about 71% smaller, than the original to represent a single node. In addition,

the final size is memory aligned and can fit multiple nodes into a single cache line,

without overlap. A cache line typically represents 64 bytes of consecutive memory,

that gets read and more importantly for the purpose of performance, cached as a

whole, whenever any point in memory is read [7]. The exact layout of the four

resulting BoxTree types is as follows2:

Cutplane 1. Type 2. Type 2x Indexes 2x 16b floats Sum

Two leafs 4 - - 8 4 16
Left leaf 4 0 - 8 4 16

Right leaf 4 - 0 8 4 16
No leafs 4 0 0 8 4 16

Table 2.3: Overview of the remaining BoxtTree members with sizes in bytes

2The new implementation can be found at: https://gitlab.informatik.uni-bremen.de/

cgvr/CollDet/-/tree/boxtree-compressed

11

https://gitlab.informatik.uni-bremen.de/cgvr/CollDet/-/tree/boxtree-compressed
https://gitlab.informatik.uni-bremen.de/cgvr/CollDet/-/tree/boxtree-compressed

CHAPTER 3

Dynamic compression

The aforementioned reduction in size, has been achieved by minimizing the amount

of variables per box, resulting in some changes to how the BoxTree has to be tra-

versed, but no change to how each box has to be read. This means performance

overhead is minimal, whilst achieving big improvements for memory usage. It is

however possible to compress this structure.

3.1 Traditional compression

A simple solution would be to use a typical compression algorithm, to compresses the

entire BoxTree after building and to decompress it, when needed. This is possible,

because nodes don’t use pointer based referencing anymore, instead relying on index

based referencing. With this, it is possible to move and compress the BoxTree in

any way, that is needed, without worrying about bad pointers. Having the data in

arrays also means, that implementing such an approach can be quite simple, as this

is a well known use case for compression and has such been implemented in libraries

like the LZMA SDK, which the 7z format uses for compression. [8] This approach

in general has a few advantages, as well as disadvantages:

12

Pros Cons

Dynamic compression rate, based on
the properties of each BoxTree

Decompressed result can be reused for
tests against other Boxtrees

Tried and tested existing implementa-
tions

Requires decompression before start-
ing to check for collisions

The entire BoxTree will be decom-
pressed, even though only a small part,
might actually be necessary

Will have a higher memory footprint
during and after decompression, than
not compressing at all

Table 3.1: Pros and cons of traditional compression

The best use case for such an implementation, seems to be a system, where collision

detection is only required for a small, rarely changing selection of distinct BoxTrees

at any given time. You could imagine a sandbox world, in which a user is able

to choose between a broad selection of items to spawn in and interact with, as a

possible scenario.

This is however not the typically expected use case and in conjunction with the

possibility, to use even more RAM during checking, than before, this option was not

chosen to explore further.

3.2 Domain specific compression

To achieve a more preferable result, decompression should be possible at the per

node basis, whilst still being able to adapt to the properties of each BoxTree. One

of these properties, that is known at the start of the construction, is the amount of

polygons, that the geometry holds. Because every leaf holds exactly one polygon,

the amount of polygons is equivalent to the amount of leafs. With this information,

the size of a full tree and with that the maximal amount of nodes in the tree can be

estimated. Both the polygon index in the leaf, as well as the node index in nodes,

have so far been represented with an 32 bit Integer. In most cases, this is way

more, than is ever needed, so the idea would be to just shrink down the size of the

13

datatypes.

One option would be to have different pregenerated versions of the nodes, with dif-

ferent sizes (int, short, byte) for these indexes, that get chosen at runtime. This

could be implemented with inheritance from a base-node, to keep changes to the col-

lision algorithm relatively low. Figuring out the concrete type of this node, would be

the only performance downside, apart from some minor inefficiencies, if the struc-

ture has to be packed using ”#pragma pack” to prevent padding. There is only

one downside to this, in terms of memory usage. As an example, if the required

bits for the two node indexes, as well as the two polygon indexes are determined

to be 9 bits, each of these would get 2 bytes, resulting in 4 bytes for indexes per

node. Optimally, only 9× 2 = 18 bits = 3 bytes would be necessary. Recall from

the optimization phase, that the cutplane only has to represents 3 different values,

which means 2 bits. Typical data structures would have to store this in at least

one byte, whilst in our example it could still fit inside the already existing 3 bytes

(9× 2 + 2 = 20 bits = 3 bytes).

To handle bit-sized datatypes, instead of byte-sized ones, C++ offers so called Bit

Fields. The size of these however have to be determined at compile time. This

means, to achieve optimal results, these would have to be pregenerated for every

possible combination of sizes using constexpr, macro combinations, as well as tem-

plate compiling every function to use all possible versions, or combination of versions,

when two BoxTrees are expected as input. It is unclear however, if the preprocessor

would be able to handle this massive amount of classes and functions. In addition,

the size of the generated binary would be massive, whilst understanding what the

code does, would probably be an order of magnitude harder, than before, as for

example, choosing the correct function would probably have to be done using a

multidimensional function pointer array. Not to mention, that all of this complexity

would be a performance overhead in and of itself. Because of all of this, a simpler

approach was chosen.

14

3.2.1 Runtime size handling

Instead of preparing every possible variation at compile-time and then choosing the

correct version of code to use, it is also possible to write the code to dynamically

handle different sized objects. To achieve this, the size of each variable in bits, has

to be stored inside of the BoxTree. When trying to read a variable from a node,

the offset of this variable has to be calculated. This means summing up the sizes of

all variables before the requested one. If the offset is larger then 8, the pointer is

going to get moved one byte, until the offset is smaller. Then, a chunk of data is

read, that is larger, than the requested variable. This chunk is then shifted, by the

remaining offset and masked.

All of this seems like a lot of work, but in practice this can be implemented quite

efficiently into a single line of code, assuming the offset is known:

auto value = (∗ (POINTER + OFFSET / 8)) >> (OFFSET % 8) & MASK

In a modern compiler (Clang 11), this compiles to just five assembly instructions:

mov eax , e s i

and eax , −8

and s i l , 7

sarx rax , qword ptr [r d i + rax] , r s i

and eax , edx

This leaves the offset and mask to be determined. The mask can just be calculated

once during construction and then just read, when needed. For the offset, a similar

strategy could be implemented. If the variables would be read one after another

however, the size of the last variable can just be added to the current offset, adding

just one instruction of work to get the offset. Both approaches result in the same

performance, so the second one was chosen.

A slightly modified version of this offset reading can also be used to write to any

position. As the performance of the construction is not the main focus of this thesis,

this part is not explained in detail. It should however be noted, that despite no at-

15

tempts at performance optimizations on that part, the build time of the compressed

BoxTree is in some cases even slightly faster, than the original. This is due to the

original BoxTrees reliance on heap-objects, the allocation of which takes longer, than

compressing and writing into an array for the compressed BoxTree.

Overall, this results in a relatively performant way, to decompress nodes, that were

compressed to the almost lowest possible amount, whilst keeping the same size for

all nodes of the same type. In theory the last of these requirements could be dropped

for nodes, that have a small indexes. By storing the size information about each

node, just like the size of each entry in an ext2 directory [9], each node could have the

minimal possible size. This would however require to traverse the entire array, node

by node, to find a node with a specific index. In addition, this would require an even

more branched and complex decompression functions, so the expected improvement

does not seem proportional to the additional performance overhead. With different

sized nodes, the nodes also have to be stored in different arrays, so the type flag

is now used to describe the type of the next node type, not just to differentiate

between polygon and node index. That also means, that nodes no longer know their

own type, but as long as that information is passed on from the parent, this is not

a problem. All of these compression-changes result in the following BoxTree:

Cutplane 1. Type 2. Type 2x Indexes 2x 16b floats Sum

Two leafs 2 - - TBD 32 34+?
Left leaf 2 2 - TBD 32 36+?

Right leaf 2 - 2 TBD 32 36+?
No leafs 2 2 2 TBD 32 38+?

Table 3.2: Overview of the compressed BoxtTree members with sizes in bits

3.2.2 Float improvements

During the Structure optimizations of the BoxTree, the floats have been reduced to

16 bit each. This may not be wanted, if the full precision is desired. In addition,

the library even supports a high precision mode, that utilizes doubles (64 bit floats).

Going from this explicit wish for precision to 16 bit seems like it may not be the

16

expected behaviour. This means another way to reduce the size taken up by the

floats has to be proposed.

Fortunately, when analyzing the distribution of these floats, a property has been

observed, that can be used to do so. Especially for simple geometric shapes, like

spheres and boxes, these floats are not all distinct values. This makes sense, as the

same form of polygon-placement repeats multiple times in these structures. Even

for geometries, that have a more sophisticated structure, like a model of a raptor

with 400000 Polygons, only ∼8% of floats are actually unique. This figure can rise

depending on the properties of the geometry. Generally speaking, the more poly-

gons, the lower the percentage of unique polygons. As such, geometries like an ATST

with 4252 Polygons has 70% unique floats, while a more detailed version with 152944

Polygons only has ∼28%. Testing this on a broad selection of different geometries

shows, that an average of only around 10-60% of floats are actually unique.[A.1]

It has to be noted, that this property only holds for the individual floats, not the

pairs of floats, that are being stored in a node.

This opens up the option to store the distinct floats in one place and then only

reference these with an index. Yet again, the size of this index can be dynamically

estimated, which can reduce its size to just a few bits in most cases. There are

however two worst cases, that may lead to this approach exceeding the original size.

Either the geometry is structured so unique, that most floats are distinct, or the

geometry is so large, that the size of the index is so large, they overshadow the

reduction from deduplicating the floats.

These problems could be mitigated, by changing the building process, to a two step

process. The first step would calculate all the values, which would be used to build

the BoxTree. The second would determine the actually required bits for all variables

and choose the optimal compression strategy for the floats. At this point however, it

is basically just the same idea, as compressing an existing BoxTree, as all the values

17

have to be stored somewhere, while it is being built. This could have its applications

and is a nice point of comparison, but the substantial additional memory and time

overhead during construction seem to make this less usable in actual applications.

Cutplane 1. Type 2. Type 2x Node Indexes 2x float Indexes Sum

Two leafs 2 - - TBD TBD 2+?

Left leaf 2 2 - TBD TBD 4+?

Right leaf 2 - 2 TBD TBD 4+?

No leafs 2 2 2 TBD TBD 6+?

Table 3.3: Overview of the deduplicated BoxTree members with sizes in bits

Overall, this compression leaves only the bare minimum of the BoxTree to be con-

stant in size, allowing for incredibly small base-nodes. This reduction will of course

be reduced, when taking into account the size of the float-array, but having nodes

the size of only one integer for very small geometries is a massive drop nonetheless.

18

CHAPTER 4

Memory savings

The previous chapters have described the optimizations and compression used to

minimize the size of the BoxTree. Simple reductions in the size of each box, could

be viewed as a reduction in the overall size of the original BoxTree. There have

however been changes, that make this calculation more difficult. First of all, moving

the leafs into the nodes, have reduced the overall amount of nodes, as well as having

created three different types of nodes. These have then been gotten custom sizes,

during compression, depending on the size of the BoxTree. In addition, the proper-

ties of the geometry can have a strong influence on the deduplication of floats. For

all these different combinations, the effects upon different models thus need to be

evaluated in order to estimate the actual memory savings. This will be done in this

chapter.

In addition to the BoxTree, the library, that has been modified, also implemented a

so called DopTree to handle collision detection. This has however shown to already

be worse in both performance and memory usage, when compared to the original

BoxTree implementation and has as such not been used as a point of further com-

parison.

Testing the overall memory usage with external measuring tools has resulted in in-

19

accurate and varying results. Especially already freed resources, like reallocated

arrays, would often not, or only at a random later time actually be given back to

the system by malloc. As a result, the actually allocated sizes have been calculated

within the program and printed out for these results.

4.1 Optimized BoxTree

To begin with, the results from merging the leafs into the nodes will be shown.

Figure 4.1: Effects of merging leafs into nodes [A.2]

O
ri

gi
n
al

R
ap

to
r-

40
00

0

A
T

S
T

-4
25

2

A
T

S
T

-2
01

32

A
T

S
T

-1
52

94
4

C
as

tl
e-

14
87

1

sp
h
er

e-
ca

se
-1

0

20

40

60

80

100

#
B

ox
es

in
co

m
p
ar

is
on

to
or

ig
in

al
in

%

Despite having a wide range of models1 and levels of detail for the same geometries,

the ratio of original leafs to inner nodes is almost the same across the board. This

is surprising, as the generated binary trees are not at all complete, nor full and thus

generally not easily predictable. With this percentage and the ratio of original, to

optimized node size, the expected size of the optimized BoxTree, can be relatively

1The models can be found here: https://cgvr.cs.uni-bremen.de/research/colldet_

benchmark/ or in the original implementation itself. The new models did require conversion
using [10]

20

https://cgvr.cs.uni-bremen.de/research/colldet_benchmark/
https://cgvr.cs.uni-bremen.de/research/colldet_benchmark/

trivially estimated.

SizeOptimized ≈ SizeOriginal ∗ 0.64 ∗ (16/56) ≈ SizeOriginal ∗ 0.18 (4.1)

This means, even before doing any compression, the size has already been reduced

by around 82%. Recall, that this optimized version, uses 16bit floats, which is a

divergence from the original. Storing 32 bit floats will result in almost the same

amount of reduction however.

SizeOptimized ≈ SizeOriginal ∗ 0.64 ∗ (20/56) ≈ SizeOriginal ∗ 0.23 (4.2)

Using these two results as the new baseline, the geometry dependant compression

can be compared.

4.2 Compression

As noted before, the size of the indexes will be estimated during construction, to

ensure a fast and memory efficient build-process, not necessarily the optimal results.

To see, how close this approach is to the optimum, the optimal values for each model

have been manually determined and tested. This should give a good indication, of

how good this approach is in practice.

Raptor-40000 ATST-4252 ATST-152944 Castle-14871
0

20

40

60

80

100

S
iz

es
in

re
la

ti
on

to
O

p
ti

m
iz

ed
in

%

Optimized
Compressed

Opt. Compression

Figure 4.2: Memory results of dynamic compression [A.3]

21

This shows, that the size of the BoxTree has been almost halved yet again. Almost

independent of geometry, or polygon count, this reduction comes out to 42% on

average. Compared to the original, this means a ∼90% reduction. In addition, it

is visible, that the estimated compression is almost on par, with the lowest possible

compression. This can be attributed to the ratio of leafs to nodes of the original

BoxTree. With about 64% of all boxess being nodes and 36% leafs, this means the

amount of compressed boxes is around double the amount of leafs. The amount of

leafs is however just the amount of polygons, thus giving a good estimate for the

amount of compressed nodes of:

#CompressedNodes = #Polygons ∗ 2 (4.3)

To ensure a one-pass build-process, the constant has even been increased to 3, for

the actual implementation, that has been tested, in case of a theoretical worst-case

model. With this, the size for node indexes can be calculated with maximal 1-2

unused bits, thus giving us almost optimal compression.

4.2.1 Deduplication of floats

So far, the compression has always been expected to result in lower sizes and only

the range of this has had be be determined. With the deduplication of floats, this

is not the case any more. By moving from floats, to indexes to floats, the reduction

is dependant on both the size of the indexes, as well as the amount of unique floats.

Just as with the node-indexes, the size of the indexes will be estimated to expect

the worst case. This means every node could have two unique floats, and thus this

has to be expected:

#MaxUniqueF loats = #CompressedNodes× 2 (4.4)

With this equation, the size of the float-indexes already matches the size of the

16 bit-floats with just around ten thousand polygons. Combined with the stored

floats, it should therefore not be expected, that the compression matches that of the

22

previous version. As the float array stores actual 32 bit floats, in comparison to the

16 bit floats, this would also not really be a fair comparison. When comparing node

sizes to a compressed 32-bit float version, around 716 million polygons would be

necessary to reach that size for the deduplicated version. For any geometry, that is

smaller, which should be almost always the case, the node-size can thus be reduced

in comparison to the simple version and depending on the uniqueness of the floats,

even as a whole. To see how much this loses by having to estimate the amount of

unique floats for index sizes, a ideal version has also been tested and plotted against

the previously mentioned approaches.

Figure 4.3: Comparison of all different compression variants [A.4]

Raptor-40000 ATST-4252 ATST-152944 Castle-14871
0

20

40

60

80

100

S
iz

es
in

re
la

ti
on

to
O

p
ti

m
iz

ed
in

%

Optimized 16b
Comp. 32b

Opt. Comp. 32b
Dedup.

Opt. Dedup.
Comp. 16b

Opt. Comp. 16b

This time, the different geometries make a huge difference. For the raptor and the

Castel models, the size of the deduplicated BoxTrees are smaller, than just having

the 32bits in the node and larger, than storing 16 bit floats. The BoxTree for the

small ATST in comparison exceeds the simple approach for storing 32 bit floats.

Increasing the detail of that model, makes the compression worth while again. As

noted in the last chapter, this can be explained by the percentage of unique floats.

Unsurprisingly, the small ATST model has the highest at 69%, with the others at

around 8-34%. This suggests, that this approach is only worth while, when dealing

with large geometries, even though the size of the indexes gets reduced the most for

small geometries.

23

4.3 Conclusion

Switching between deduplication and in-node storing depending on the geometry

size, should be the approach to take, when 32bits of precision are needed and the

goal is maximal space efficiency. As this could be done by just one branch in the

build and collision check functions, that lead to different implementations, there

should be no performance overhead from the switching itself. For general use cases,

the 16 bit compressed variant remains the most space efficient. When build time is

not a relevant factor, the calculations for the optimal variants of both approaches

can also be done after the building of a temporary BoxTree, that is then compressed

in the optimal way and with optimal index-sizes. As the memory usage during the

build-process already exceeds the actual BoxTree size by a factor of 10, this is not

unrealistic in terms of extra memory usage.

24

CHAPTER 5

Performance overhead and optimizations

Multiple options to compress and optimize a BoxTree have been shown, as well as

their effects on memory usage. Now the question becomes, with what performance

penalties, these improvements have been gained. With that information, it should

be possible to determine the overall efficiency of these approaches and a recommen-

dation, when each could be used, can be given.

5.1 Testing Methodology

In comparison to measuring or calculating memory usage, measuring performance

is a more complex undertaking. Especially for Collision Detection, as the used ge-

ometry, the distance between objects and the rotation can have a huge influence on

the result. To tackle this problem, there exists a set of predetermined distance and

rotation values, that test different aspects of collision detection, upon a predeter-

mined collection of models. [11] These values and geometries have in the following

tests been used to give the best representation of the performance differences. 1

1For this purpose, the original authors, have supplied a benchmarking program. The time
commitment to get this working, greatly exceeded the time to re-implement the main functionality
though. As such, the official way of handling these values has not been used.

25

To ensure correct results, multiple runs of each test have been done. The first of

these has always been discarded, as it generally varied by a bit from subsequent runs

and the time of the remaining ones have been averaged. For determining more spe-

cific performance metrics, perf has been used to monitor detailed program statistics

and performance on a per instruction level.

During the runs, no other programs appart from the OS have been running on the

System2 to ensure a controled environment. In addition, a modern linux kernel

5.15-Manjaro and compiler (GCC11.1) on ”-O3 -march-native” optimization set-

tings have been used for realistic, modern-day performance setting.3

5.2 Optimized BoxTree

The optimized BoxTree implemented the changes, most likely to result in only mini-

mal performance penalties. The biggest of these, can be expected to be the removal

of the polygons from the leafs. To read these, they have to be read from the polygon

vector in the geometry. This means a read from the already present node is traded

for one to somewhere into the RAM. Converting a float from 16 to 32 bits is only

3 instructions using Intel Intrinsics, but these also add up, over the entire runtime.

Moving constant information into a header, is almost free, as this information is

almost certainly going to be cached after the first node. Having nodes in an array

might even gain performance, as having all nodes in one place, multiple nodes can be

on the same cache-line. That means the chance is high, that the next accessed node

is already in cache and can be accessed considerably faster, than normal reading

from memory. To maximize this, the first child of each node is placed right after

that node. The checking function also starts checking that child, when possible.

With a node-size of 16 and a cache-line size of 64 Byte, it not thus possible to have

2System: Intel i5-8250U, 8GB RAM
3The default Ubuntu Compiler GCC9.3 on -O2 optimizations massively favored the new im-

plementations, as it was unable to optimize a slow loop in the original away. Because of this, the
most recent and most optimized versions of everything have been used.

26

the three next nodes cached, by just reading the first.

Figure 5.1: Comparison of original speed vs. optimized [A.6]

ATST-4252 ATST-152944 Castle-14871
0

50

100

150

O
ri

gi
n
al

v
s.

op
ti

m
iz

ed
sp

ee
d

in
% Original

Optimized

Despite the possible improvements, the memory optimized version is still around

10% slower, than the original. As expected, the average reduction in speed can

be traced back to the converting of floats and accessing arrays, with each taking

about ∼3-5% each of the total runtime. When it comes to caches, the optimized

version has overall less cache-misses, than the original, despite the extra read into

the geometry. This hints at the fact, that the multiple nodes per cache line do get

extensively used and help to keep the overall performance relatively similar. [A.7]

Despite not being able to catch up to the original implementation, this performance

loss is minor, compared to the aforementioned ∼82% memory gain.

5.3 Compressed BoxTree

When applying compression on top of that, the performance loss can be expected

to be considerably worse. As noted previously, the just about ∼12 instructions per

check, necessary for converting all floats of two BoxTree Nodes in the optimized ver-

sion, resulted in a ∼3-5% slowdown. Every read from the compressed BoxTree will

result in at least 6 decompression instructions, which can quickly become incredibly

costly. To reduce these effects to a minimum, all the decompression is handled at

27

the start of the comparison between two nodes. This way, every member only has

to be decompressed once and can then be used like usual for the rest of the check.

In addition, when reaching the leafs, the decompressed node-information is passed

on to the next function call, that can reuse the data, limiting the amount of decom-

pression needed to almost the minimum. The optimal solution might seem to be

caching the results of all nodes and to store them, until the end of the comparison.

That way, every node only has to be decompressed once and if a node is visited for

the second time, it can just read from wherever the node has been decompressed to.

This would however greatly increase the memory usage during checking. In addi-

tion, the overhead and added branches from this actually even resulted in a slower

execution time, when experimenting with that approach. As such, only limited reuse

of decompressed node-information was implemented.

Figure 5.2: Comparison of original speed vs. compressed [A.6]

ATST-4252 ATST-152944 Castle-14871
0

50

100

150

200

O
ri

gi
n
al

v
s.

co
m

p
re

ss
ed

sp
ee

d
in

%

Original
Compressed

The performance is considerably worse, which could probably have been expected.

Especially when comparing memory gain, against the performance overhead, this

becomes apparent. To halve the remaining size of the optimized version, the over-

head increases by around a factor of 6 to ∼60%. Overall this means, to reduce the

size by 82% requires a 10% performance overhead and to reduce the original size by

90% a 60% overhead. A huge amount of work has been put into implementing this

compression as efficiently as possible, so this remaining overhead seems to be the

28

around the minimum required to use this memory reduction. The only remaining

options would be to either implement multi-threading, or increase the branching

factor of the BoxTree.

Multi-Threading might reduce the overhead, but it would also be possible and only

fair to implement the same changes in the original, effectively not resulting in any

change between the implementations. Otherwise, testing a single threaded applica-

tion against one with in theory unlimited Threads would not really show anything

other, than that more resources mean faster performance.

Increasing the branching factor means instead of having one box of the BoxTree split

into two boxes, that one box splits into n > 2 many boxes. This could of course

also just be implemented in the original, it does however have another problem. To

represent more boxes, more data would have to be stored in each node. Effectively

moving away from the best possible compression, at which point the optimized

version should just be the preferred option.

5.3.1 Deduplication

Deduplication adds another layer of overhead on top of the existing compression.

First the float index has to be decompressed and with that, the float array has to

be read. This is most likely not cached and might even override cache, that could

otherwise hold node information.

29

Figure 5.3: Overview of all performance comparisons [A.6]

ATST-4252 ATST-152944 Castle-14871
0

50

100

150

200

O
ri

gi
n
al

v
s.

al
l

ot
h
er

im
p
le

m
en

ta
ti

on
s

sp
ee

d
in

%

Original
Optimized

Compressed
Dedup.

Despite that, the performance can in some cases even be marginally faster, than

the basic compressed version. It seems like the 3 instructions to convert a float in

the compressed version is actually slower, than reading a value from an array. The

overall performance does also seem to somewhat correlate with the unique amount

of floats, that these geometries have. One explanation would be, that the same

floats get accessed over and over again. As the model with the lowest amount of

unique floats is the slowest, this does however not really make sense. A more likely

explanation would be, that deciding factor is the overall size of the geometry. With

a small geometry comes a small float-vector. This means the 4 floats, that can be

stored per cache line account for a higher percentage of the overall amount of floats,

making it more likely to access already cached results. Exactly this behaviour can

also be observed, when looking at the cache-misses of these implementations, were

compared to the compressed implementation, the cache-misses for the ATST-152944

is considerably higher, whilst staying relatively similar for the other models.[A.7]

30

CHAPTER 6

Conclusion

Looking at the performance results in comparison to the memory gain shows, that

it is possible to achieve big memory gains with only minor performance penalties.

This optimized implementation can be recommended for basically every use case,

that values memory usage to some extend. When applying compression on top of

that, the applicable use-cases shrink. With 60% overhead, this seems to be only be

useful, when either the required RAM should be kept to a minimum for cost rea-

sons, or the performance is not really a concern. For these, the question becomes, if

deduplication of floats should be attempted. As seen during the performance tests,

deduplication can be marginally faster, than the regular compressed version, it does

however not reach the compression levels of that. With the performance differences

almost falling into measuring inaccuracies, deduplicating the floats does overall not

seem to be a viable strategy and remaining with 16bit floats seems to be the way to

go.

With around 80-90% reduction in size, the size of the BoxTree seems to be almost

at a minimum. As explained during the Automatic index calculation, the indexes

are hard, if not impossible to optimize away. To reduce the size of the floats below

31

2 bytes each would either require implementing a custom conversion algorithm, or

resort to some sort of approximation. To keep a comparable pace, this would have

to be done with just a hand full of instructions, whilst the less precise result would

most likely result in more unnecessary node-checks, further decreasing performance.

For the time being, the current optimization and compression seems to be around

the lowest possible.

32

List of Abbreviations

CNC Computerized Numerical Control. 1

CPU Central processing unit. 3

GCC GNU Compiler Collection. 26

GPU Graphics processing unit. 3

IoT Internet of Things. 2

RAM Random-Access Memory. 2, 3, 13, 26, 31

TBD to be determined. 16, 18

V-RAM Video Random Access Memory. 3

33

Bibliography

[1] T. Duc Tang, “Algorithms for collision detection and avoidance for five-axis
nc machining: A state of the art review,” Computer-Aided Design, vol. 51,
pp. 1–17, 06 2014. 1

[2] F. Schwarzer, M. Saha, and J.-C. Latombe, Exact Collision Checking of Robot
Paths, pp. 25–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. 1

[3] S. Dinas and J. Ban, “A literature review of bounding volumes hierarchy focused
on collision detection,” vol. 17, pp. 49–62, 06 2015. 1

[4] G. Zachmann, “The boxtree: Exact and fast collision detection of arbitrary
polyhedra,” 03 2001. 1.1

[5] Sony, “Playstation 5 spec sheet.” https://www.playstation.com/en-us/

ps4/tech-specs/, 2021. Accessed: 2021-10-14. 1.2

[6] Yuming Zou and Paul E. Black, “perfect binary tree in dictionary of algorithms
and data structures [online], paul e. black, ed. 27.” https://www.nist.gov/

dads/HTML/perfectBinaryTree.html, 11 2019. Accessed: 2021-10-25. 2.6

[7] U. Drepper, “What every programmer should know about memory,” 2007. 2.7

[8] Igor Pavlov, “7-zip compression library.” https://www.7-zip.org/sdk.html,
2021. Accessed: 2021-10-14. 3.1

[9] K. C. Wang, EXT2 File System, pp. 301–356. Cham: Springer International
Publishing, 2018. 3.2.1

[10] P. Min, “meshconv.” http://www.patrickmin.com/meshconv or
https://www.google.com/search?q=meshconv, 1997 - 2019. Accessed:
2021-10-20. 1

[11] R. Weller, D. Mainzer, G. Zachmann, M. Sagardia, T. Hulin, and C. Preusche,
“A benchmarking suite for 6-dof real time collision response algorithms,” 01
2010. 5.1

34

https://www.playstation.com/en-us/ps4/tech-specs/
https://www.playstation.com/en-us/ps4/tech-specs/
https://www.nist.gov/dads/HTML/perfectBinaryTree.html
https://www.nist.gov/dads/HTML/perfectBinaryTree.html
https://www.7-zip.org/sdk.html

APPENDIX

A.1 Distribution of unique floats

Number of floats Unique floats Unique floats in %

ATST-4252 14838 10378 69,94

ATST 20132 70468 43085 61,14

ATST-152944 533848 148970 27,90

Castle 14871 50022 17075 34,13

Raptor-400000 1545566 126665 8.20

boxtree sphere case 1 3256 1673 51,38

sphere -1310720

(complexity 1000)
5351530 650426 12,5

35

A.2 Number of merged vs unmerged nodes

% merged / orig # orig-nodes # merged nodes

Raptor-40000 66 1172783 772783

ATST-4252 64 11623 7419

ATST-20132 64 55033 35234

ATST-152944 64 417155 266924

Castle-14871 65 39630 25011

boxtree sphere case 1 65 2510 1628

A.3 Size of optimized vs (optimally) compressed

optimized size

in KB

compressed size

in KB

optimal compressed size

in KB

Raptor-40000 12074 7394 7394

ATST-4252 116 62 58

ATST-152944 4171 2548 2518

Castle-14871 391 214 211

36

A.4 Sizes of all optimizations/compressions

Raptor-40000 ATST-4252 ATST-152944 Castle-14871

optimized size

in KB
12074 116 4171 391

comp. f16 size

in KB
7394 62 2548 214

opt. comp. f16 size

in KB
7394 58 2518 211

comp. f32 size

in KB
10413 91 3591 312

opt. comp. f32 size

in KB
10413 87 3560 308

Dedup size

in KB
9312 98 3391 281

opt. Dedup size

in KB
8041 97 3189 262

A.5 f16-conversion

#include <immintrin . h>

f loat f16Tof32 (unsigned short n){

return c v t s h s s (n) ;

}

f16Tof32 (unsigned short) :

vpxor xmm0, xmm0, xmm0

vpinsrw xmm0, xmm0, edi , 0

vcvtph2ps xmm0, xmm0

r e t

This has been compiled using ”-march=skylake, -O3” using GCC 11.1.

37

A.6 Speed comparisons

Orig. time

in ms

Opt. time

in ms

Compressed time

in ms

Dedup. time

in ms

Castle-14871 109835 120301 172537 168131

ATST-4252 49308 55841 82790 812318

ATST-152944 82396 87710 129701 130232

These have been gathered by running: ”./bench -A ALGO -g cu PATH-TO-MODEL

-f PATH-TO-POSITIONS” using the modified version of bench

A.7 Cache-misses comparison

#cache-misses

original

#cache-misses

compressed

#cache-misses

deduplicated

ATST 4252 22.722.822 19.604.482 20.363.871

ATST 152944 76.001.853 63.070.606 75.479.357

Castle 14871 59.524.581 26.210.776 27.545.390

38

	Abstract
	Introduction
	Structure optimizations
	Dynamic compression
	Memory savings
	Performance overhead and optimizations
	Conclusion
	Appendix
	

